Antimicrobial medium- and long-chain free fatty acids prevent PrfA-dependent activation of virulence genes in Listeria monocytogenes.
نویسندگان
چکیده
The foodborne pathogen Listeria monocytogenes is the causative agent of the invasive disease listeriosis. Infection by L. monocytogenes involves bacterial crossing of the intestinal barrier and intracellular replication in a variety of host cells. The PrfA protein is the master regulator of virulence factors required for bacterial entry, intracellular replication and cell-to-cell spread. PrfA-dependent activation of virulence genes occurs primarily in the blood and during intracellular infection. In contrast, PrfA does not play a significant role in regulation of virulence gene expression in the intestinal environment. In the gastrointestinal phase of infection, the bacterium encounters a variety of antimicrobial agents, including medium- and long-chain free fatty acids that are commonly found in our diet and as active components of bile. Here we show that subinhibitory concentrations of specific antimicrobial free fatty acids act to downregulate transcription of PrfA-activated virulence genes. Interestingly, the inhibitory effect is also evident in cells encoding a constitutively active variant of PrfA. Collectively, our data suggest that antimicrobial medium- and long-chain free fatty acids may act as signals to prevent PrfA-mediated activation of virulence genes in environments where PrfA activation is not required, such as in food and the gastrointestinal tract.
منابع مشابه
Overexpression of PrfA leads to growth inhibition of Listeria monocytogenes in glucose-containing culture media by interfering with glucose uptake.
Listeria monocytogenes strains expressing high levels of the virulence regulator PrfA (mutant PrfA* or wild-type PrfA) show strong growth inhibition in minimal media when they are supplemented with glucose but not when they are supplemented with glucose-6-phosphate compared to the growth of isogenic strains expressing low levels of PrfA. A significantly reduced rate of glucose uptake was observ...
متن کاملSelected prfA* mutations in recombinant attenuated Listeria monocytogenes strains augment expression of foreign immunogens and enhance vaccine-elicited humoral and cellular immune responses.
While recombinant Listeria monocytogenes strains can be explored as vaccine candidates, it is important to develop attenuated but highly immunogenic L. monocytogenes vaccine vectors. Here, prfA* mutations selected on the basis of upregulated expression of L. monocytogenes PrfA-dependent genes and proteins were assessed to determine their abilities to augment expression of foreign immunogens in ...
متن کاملIdentification of novel Listeria monocytogenes secreted virulence factors following mutational activation of the central virulence regulator, PrfA.
Upon bacterial entry into the cytosol of infected mammalian host cells, the central virulence regulator PrfA of Listeria monocytogenes becomes activated and induces the expression of numerous factors which contribute to bacterial pathogenesis. The mechanism or signal by which PrfA becomes activated during the course of infection has not yet been determined; however, several amino acid substitut...
متن کاملIntegrative Genomic Analysis Identifies Isoleucine and CodY as Regulators of Listeria monocytogenes Virulence
Intracellular bacterial pathogens are metabolically adapted to grow within mammalian cells. While these adaptations are fundamental to the ability to cause disease, we know little about the relationship between the pathogen's metabolism and virulence. Here we used an integrative Metabolic Analysis Tool that combines transcriptome data with genome-scale metabolic models to define the metabolic r...
متن کاملGlucose-1-phosphate utilization by Listeria monocytogenes is PrfA dependent and coordinately expressed with virulence factors.
Virulence genes of the facultative intracellular pathogen Listeria monocytogenes are coordinately regulated by the activator protein PrfA, encoded by prfA, a member of the cyclic AMP receptor protein family of bacterial transcription factors. We found that prfA* mutants that constitutively overexpress the virulence regulon due to a Gly145Ser substitution in PrfA (M.-T. Ripio, G. Domínguez-Berna...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Research in microbiology
دوره 168 6 شماره
صفحات -
تاریخ انتشار 2017